1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/*
 * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
 * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice including the dates of first publication and
 * either this permission notice or a reference to
 * http://oss.sgi.com/projects/FreeB/
 * shall be included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 * Except as contained in this notice, the name of Silicon Graphics, Inc.
 * shall not be used in advertising or otherwise to promote the sale, use or
 * other dealings in this Software without prior written authorization from
 * Silicon Graphics, Inc.
 */
/*
** Author: Eric Veach, July 1994.
**
*/

#include "gluos.h"
//#include "mesh.h"
#include "tess.h"
//#include "normal.h"
//#include <math.h>
//#include <assert.h>

#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif

#define Dot(u,v)	(u[0]*v[0] + u[1]*v[1] + u[2]*v[2])

#if 0
static void Normalize( GLdouble v[3] )
{
  GLdouble len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];

  assert( len > 0 );
  len = sqrt( len );
  v[0] /= len;
  v[1] /= len;
  v[2] /= len;
}
#endif

#undef	ABS
#define ABS(x)	((x) < 0 ? -(x) : (x))

static int LongAxis( GLdouble v[3] )
{
  int i = 0;

  if( ABS(v[1]) > ABS(v[0]) ) { i = 1; }
  if( ABS(v[2]) > ABS(v[i]) ) { i = 2; }
  return i;
}

static void ComputeNormal( GLUtesselator *tess, GLdouble norm[3] )
{
  GLUvertex *v, *v1, *v2;
  GLdouble c, tLen2, maxLen2;
  GLdouble maxVal[3], minVal[3], d1[3], d2[3], tNorm[3];
  GLUvertex *maxVert[3], *minVert[3];
  GLUvertex *vHead = &tess->mesh->vHead;
  int i;

  maxVal[0] = maxVal[1] = maxVal[2] = -2 * GLU_TESS_MAX_COORD;
  minVal[0] = minVal[1] = minVal[2] = 2 * GLU_TESS_MAX_COORD;

  for( v = vHead->next; v != vHead; v = v->next ) {
    for( i = 0; i < 3; ++i ) {
      c = v->coords[i];
      if( c < minVal[i] ) { minVal[i] = c; minVert[i] = v; }
      if( c > maxVal[i] ) { maxVal[i] = c; maxVert[i] = v; }
    }
  }

  /* Find two vertices separated by at least 1/sqrt(3) of the maximum
   * distance between any two vertices
   */
  i = 0;
  if( maxVal[1] - minVal[1] > maxVal[0] - minVal[0] ) { i = 1; }
  if( maxVal[2] - minVal[2] > maxVal[i] - minVal[i] ) { i = 2; }
  if( minVal[i] >= maxVal[i] ) {
    /* All vertices are the same -- normal doesn't matter */
    norm[0] = 0; norm[1] = 0; norm[2] = 1;
    return;
  }

  /* Look for a third vertex which forms the triangle with maximum area
   * (Length of normal == twice the triangle area)
   */
  maxLen2 = 0;
  v1 = minVert[i];
  v2 = maxVert[i];
  d1[0] = v1->coords[0] - v2->coords[0];
  d1[1] = v1->coords[1] - v2->coords[1];
  d1[2] = v1->coords[2] - v2->coords[2];
  for( v = vHead->next; v != vHead; v = v->next ) {
    d2[0] = v->coords[0] - v2->coords[0];
    d2[1] = v->coords[1] - v2->coords[1];
    d2[2] = v->coords[2] - v2->coords[2];
    tNorm[0] = d1[1]*d2[2] - d1[2]*d2[1];
    tNorm[1] = d1[2]*d2[0] - d1[0]*d2[2];
    tNorm[2] = d1[0]*d2[1] - d1[1]*d2[0];
    tLen2 = tNorm[0]*tNorm[0] + tNorm[1]*tNorm[1] + tNorm[2]*tNorm[2];
    if( tLen2 > maxLen2 ) {
      maxLen2 = tLen2;
      norm[0] = tNorm[0];
      norm[1] = tNorm[1];
      norm[2] = tNorm[2];
    }
  }

  if( maxLen2 <= 0 ) {
    /* All points lie on a single line -- any decent normal will do */
    norm[0] = norm[1] = norm[2] = 0;
    norm[LongAxis(d1)] = 1;
  }
}


static void CheckOrientation( GLUtesselator *tess )
{
  GLdouble area;
  GLUface *f, *fHead = &tess->mesh->fHead;
  GLUvertex *v, *vHead = &tess->mesh->vHead;
  GLUhalfEdge *e;

  /* When we compute the normal automatically, we choose the orientation
   * so that the sum of the signed areas of all contours is non-negative.
   */
  area = 0;
  for( f = fHead->next; f != fHead; f = f->next ) {
    e = f->anEdge;
    if( e->winding <= 0 ) continue;
    do {
      area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t);
      e = e->Lnext;
    } while( e != f->anEdge );
  }
  if( area < 0 ) {
    /* Reverse the orientation by flipping all the t-coordinates */
    for( v = vHead->next; v != vHead; v = v->next ) {
      v->t = - v->t;
    }
    tess->tUnit[0] = - tess->tUnit[0];
    tess->tUnit[1] = - tess->tUnit[1];
    tess->tUnit[2] = - tess->tUnit[2];
  }
}

#ifdef FOR_TRITE_TEST_PROGRAM
#include <stdlib.h>
extern int RandomSweep;
#define S_UNIT_X	(RandomSweep ? (2*drand48()-1) : 1.0)
#define S_UNIT_Y	(RandomSweep ? (2*drand48()-1) : 0.0)
#else
#if defined(SLANTED_SWEEP)
/* The "feature merging" is not intended to be complete.  There are
 * special cases where edges are nearly parallel to the sweep line
 * which are not implemented.  The algorithm should still behave
 * robustly (ie. produce a reasonable tesselation) in the presence
 * of such edges, however it may miss features which could have been
 * merged.  We could minimize this effect by choosing the sweep line
 * direction to be something unusual (ie. not parallel to one of the
 * coordinate axes).
 */
#define S_UNIT_X	0.50941539564955385	/* Pre-normalized */
#define S_UNIT_Y	0.86052074622010633
#else
#define S_UNIT_X	1.0
#define S_UNIT_Y	0.0
#endif
#endif

/* Determine the polygon normal and project vertices onto the plane
 * of the polygon.
 */
void __gl_projectPolygon( GLUtesselator *tess )
{
  GLUvertex *v, *vHead = &tess->mesh->vHead;
  GLdouble norm[3];
  GLdouble *sUnit, *tUnit;
  int i, computedNormal = FALSE;

  norm[0] = tess->normal[0];
  norm[1] = tess->normal[1];
  norm[2] = tess->normal[2];
  if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
    ComputeNormal( tess, norm );
    computedNormal = TRUE;
  }
  sUnit = tess->sUnit;
  tUnit = tess->tUnit;
  i = LongAxis( norm );

#if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT)
  /* Choose the initial sUnit vector to be approximately perpendicular
   * to the normal.
   */
  Normalize( norm );

  sUnit[i] = 0;
  sUnit[(i+1)%3] = S_UNIT_X;
  sUnit[(i+2)%3] = S_UNIT_Y;

  /* Now make it exactly perpendicular */
  w = Dot( sUnit, norm );
  sUnit[0] -= w * norm[0];
  sUnit[1] -= w * norm[1];
  sUnit[2] -= w * norm[2];
  Normalize( sUnit );

  /* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */
  tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1];
  tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2];
  tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0];
  Normalize( tUnit );
#else
  /* Project perpendicular to a coordinate axis -- better numerically */
  sUnit[i] = 0;
  sUnit[(i+1)%3] = S_UNIT_X;
  sUnit[(i+2)%3] = S_UNIT_Y;

  tUnit[i] = 0;
  tUnit[(i+1)%3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y;
  tUnit[(i+2)%3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X;
#endif

  /* Project the vertices onto the sweep plane */
  for( v = vHead->next; v != vHead; v = v->next ) {
    v->s = Dot( v->coords, sUnit );
    v->t = Dot( v->coords, tUnit );
  }
  if( computedNormal ) {
    CheckOrientation( tess );
  }
}